Identification of specific gene copy number changes in asbestos-related lung cancer.

نویسندگان

  • Penny Nymark
  • Harriet Wikman
  • Salla Ruosaari
  • Jaakko Hollmén
  • Esa Vanhala
  • Antti Karjalainen
  • Sisko Anttila
  • Sakari Knuutila
چکیده

Asbestos is a well-known lung cancer-causing mineral fiber. In vitro and in vivo experiments have shown that asbestos can cause chromosomal damage and aberrations. Lung tumors, in general, have several recurrently amplified and deleted chromosomal regions. To investigate whether a distinct chromosomal aberration profile could be detected in the lung tumors of heavily asbestos-exposed patients, we analyzed the copy number profiles of 14 lung tumors from highly asbestos-exposed patients and 14 matched tumors from nonexposed patients using classic comparative genomic hybridization (CGH). A specific profile could lead to identification of the underlying genes that may act as mediators of tumor formation and progression. In addition, array CGH analyses on cDNA microarrays (13,000 clones) were carried out on 20 of the same patients. Classic CGH showed, on average, more aberrations in asbestos-exposed than in nonexposed patients, and an altered region in chromosome 2 seemed to occur more frequently in the asbestos-exposed patients. Array CGH revealed aberrations in 18 regions that were significantly associated with either of the two groups. The most significant regions were 2p21-p16.3, 5q35.3, 9q33.3-q34.11, 9q34.13-q34.3, 11p15.5, 14q11.2, and 19p13.1-p13.3 (P < 0.005). Furthermore, 11 fragile sites coincided with the 18 asbestos-associated regions (P = 0.08), which may imply preferentially caused DNA damage at these sites. Our findings are the first evidence, indicating that asbestos exposure may produce a specific DNA damage profile.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential mutation profiles and similar intronic TP53 polymorphisms in asbestos-related lung cancer and pleural mesothelioma.

Given the interest in defining biomarkers of asbestos exposure and to provide insights into asbestos-related and cell-specific mechanisms of neoplasia, the identification of gene alterations in asbestos-related cancers can help to a better understanding of exposure risk. To understand the aetiology of asbestos-induced malignancies and to increase our knowledge of mesothelial carcinogenesis, we ...

متن کامل

Bioinformatics identification of miRNA-mRNA regulatory network contributing to lung cancer invasion

Background: Over the past 15 years, significant insights have been gained into the roles of miRNAs in cancer. In various cancers, miRNAs can act as oncogenes, tumor suppressors, or control the metastasis process by modulating the expression of numerous target genes. This study is aimed at determining molecular network of miRNA-mRNA regulating lung cancer invasion, by bioinformatics approaches. ...

متن کامل

BIRC5 Genomic Copy Number Variation in Early-Onset Breast Cancer

Background: Baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5) gene is an inhibitor of apoptosis that expresses in human embryonic tissues but it is absent in most healthy adult tissues. The copy number of BIRC5 has been indicated to be highly increased in tumor tissues; however, its association with the age of onset in breast cancer is not well understood. Methods: Forty tumor tiss...

متن کامل

بررسی منحنی های عملکرد ریوی در شاغلین کارخانه های تولید کننده محصولات سیمانی آزبستی

  Background and aims : Asbestos components are one of the most hazardous air pollutants that can cause a number of serious diseases in humanincluding asbestosis, lung cancer and mesothelioma . The main goal of this research was the assessment of occupational exposure effects with Asbestos fibers on pulmonary function and lung capacity disorders in worker of an Asbestos- cement pipe and plate m...

متن کامل

بررسی انحراف‌های کروموزومی در کارسینوم داکتال مهاجم پستان به روش هیبریدیزاسیون ژنومی مقایسه‌ای

Background: Nonlethal genetic damage is the basis for carcinogenesis. As various gene aberrations accumulate, malignant tumors are formed, regardless of whether the genetic damage is subtle or large enough to be distinguished in a karyotype. The study of chromosomal changes in tumor cells is important in the identification of oncogenes and tumor suppressor genes by molecular cloning of genes in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 66 11  شماره 

صفحات  -

تاریخ انتشار 2006